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Abstract The problem of thermal conduction in a perturbed one-dimensional Toda lattice is 
investigated within the framework of non-equilibrium thermodynamics. The intrinsic thermal 
resistance of the lattice is due to its anharmonicity with the dominant contributing mechanism 
involving solitowphonon interactions. Our calculations indicate that the cwfficient of heat 
conduction is exceedingly small at both very low and very high t e m p e r a m  and exhibits an 
expected maximum in the intermediate temperature range. 

1. Introduction 

The on-going search for physical (especially lattice dynamics) models that would exhibit 
the Fourier heat law (m) is, as stated by Peierls [l], one of the outstanding unsolved 
problems of modem physics. This gives a strong motivation to undertake the present study. 
Let us recall here that even systems obeying the FHL can transport energy in the form of 
slowly decaying coherent excitations such as sound-like pulses and solitary waves. For an 
up-to-date review of the literature on the topic of heat waves as thermal energy carriers, the 
reader is referred to the excellent survey by Joseph and F'reziosi [2]. 

Toda [3] has emphasized the importance of lattice anharmonicity and solitons for 
mechanisms of heat energy flow in electrically non-conducting crystals. Thermal resistance 
of such materials arises as a resuIt of a number of contributions, for example due to 
dislocations, point defects, external boundaries with heat reservoirs and a host of other 
imperfections. On the other hand, in perfect crystals, two types of processes can be 
distinguished. First, so-called normal processes are defined as such where the total 
momentum of lattice phonons is conserved. For this reason they cannot contribute to 
thermal resistance since this implies a continued energy flow. Then, there are the so-called 
Umklapp processes, for which the total momentum is not COnSeNed since a potion of 
the phonon momentum is transferred to the lattice. These types of processes contribute 
significantly to the overall thermal resistance of the lattice. 

It has been demonstrated [4] that the thermal conductivity of a monatomic harmonic 
lattice is infinite (zero resistance) since the temperature gradient across the lattice vanishes. 
This is in contrast to a perfect anharmonic lattice (for example, with a Lennard-Jones 
intersite potential), whose condilctivity stays finite. Keeping the concentration of isotopic 

11 Resent address: InstiNl f i r  Thearetische Physik I, H Heine Univenitat Diisseldorf, D-40225 Diisseldorf, 
Germany. 
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impurities in the anharmonic lattice constant, it can be seen that anharmonicity always 
increases the resultant thermal conductivity. It should be emphasized that, even in the 
idealized situation of a perfect crystal free from any defects and impurities, anharmonicity 
of the restoring lattice forces would produce intrinsic thermal resistance through Umklapp 
and other contributing mechanisms. 

However, difficulties exist in the experimental determination of the relative contributions 
from the non-linear mechanisms discussed above. This is due to the fact that only very 
few crystals can be considered perfect enough that their intrinsic thermal resistance is not 
overshadowed by effects due to imperfections 151. 

The main objective of the present paper is to investigate a perturbed Toda lattice 
as a tractable example of a non-linear lattice and to examine the role of solitons and 
phonons in thermal resistance processes. The reader is referred to an important review 
paper by Mertens and Biittner [6] for information regarding Toda lattices, their classical and 
quantum properties including statistics, and thermal conductivity. In this context, it should 
be emphasized that both the classical [7] and the quantum [8] Toda lattices have been shown 
to be completely integrable. This means that all its modes of behaviour are autonomous and 
no thermalization is possible through their collisions leading to zero thermal resistance. A 
diatomic Toda lattice, however, is not integrable and, as a consequence, thermal resistance 
has been seen in numerical simulations [9]. There is still a need to investigate the origin 
of thermal resistance in monatomic lattices. Our approach to this problem wiil be to 
treat the lattice as a nearly perfect monatomic Toda lattice and focus on the relaxation 
processes of Toda solitons (Tj) off the ‘clouds’ of phonons. The working assumption will 
be that deviations from complete integrability, in the form of quantum excitations and their 
interactions with Toda solitons, give rise to finite lifetimes. and hence thermal resistance. 
The Hamiltonian will be constructed as having classical Toda contributions as well as 
quantum corrections that are relatively small but nevertheless lead to an eventual decay 
of solitons. Our calculations will be carried out in the framework of the non-equilibrium 
statistical operator technique (NSOT) [IO, 111. Although, Kubo’s linear response method was 
also successfully used for the same purpose [E], Zubarev’s NSOT technique appears to be 
more convenient in the present context. 

In contrast to a majority of papers dealing with this type of problem, we decided not to 
regard the chain as having a finite length. This approach helped us to avoid the problem of 
boundary conditions and the associated temperature discontinuity at both ends [IZ]. Also, 
this is more amenable to analytical calculations. 

This paper is organized as follows. In section 2 we outline the most fundamental 
properties of the classical Toda model. This is followed in section 3 by the preparation of 
the Toda Hamiltonian to a form amenable to subsequent perturbation calculations involving 
quantum effects. We decompose the Hamiltonian into distinct parts in terms of classical and 
quantum degrees of freedom as well as their interactions. In section 4 the density matrix 
of NSOT is formulated and then the average energy flux is calculated. Consequently, we 
extract the heat conduction coefficient in functional form. Finally, in section 5 we provide 
a discussion of the obtained results. 

2. The classical Toda lattice 

Consider a classical Toda lattice of identical molecules located periodically along the x axis 
with equilibrium distance RO between neighbouring sites. The nearest-neighbour interaction 
potential U (the Toda potential) is expressed by 

(2.1) U = (X/b)iIu. - U.-I + (W)(expIb(u,-l - u d l  - 1111. 
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The equation of motion for lattice masses is given by Newton's second law with the 
associated force given by 

f, = -au/au, (2.2) 

or, explicitly, 

Md2u,/dtZ = (x/b)[exp(bu,) - exp(bu,+dl (2.3) 

where M denotes the molecular mass and U. the displacement of the nth molecule. Here, the 
parameter x represents the longitudinal elasticity coefficient of the corresponding harmonic 
chain while b denotes the magnitude of anharmonicity. 

Introducing the relative displacement as 

p" = U,-, - U, 

the equation of motion becomes 

MdZpn/dt2 = (x/b)[exp(bp,+d + exp(bpP.-d - 2exp(bpn)l. 

exp(bp,,) - 1 = sinhz(p)/cosh2[(~/Ro)(nRo - ut)] 

(2.4) 

A one-soliton solution (E) of the Toda lattice problem is then found as 

(2.5) 

which describes a compressional pulse [IO] propagating along the chain with velocity U that 
determines the parameter p through the relationship 

v/c = sinh(p)/p (2.6) 

and c R& /M)'/' is the longitudinal sound velocity of the corresponding harmonic chain 
(i.e. for b = 0). The coefficient p is called the solitonic parameter and it defines the solitonic 
domain of localization (width) through: An = 2n/p. It is evident from equation (2.6) that 
the TS propagation velocity U always exceeds the sound velocity (U z c). Moreover, TS 
with larger amplitudes (and hence with larger parameters p) propagate faster. 

The lattice contraction between adjacent molecules, which is associated with the 
formation of a simple TS, can be calculated directly from equation (2.5) as 

pn(r)  = (l/b)ln(l + sinh2(11)/cosh2[(p/Ro)(nRo - u t ) ] } .  (2.7) 

Provided the continuum approximation is applicable (i.e. that An >> I or equivalently that 
p << k), equation (2.7) may be simplified as 

P ( X ,  t )  = ( l / b ) s i ~ Z ( p ) / C O S h z ( ~ 5 / R O )  (2.8) 

where we have introduced a moving coordinate 6 x - xo - vt with xo representing the 
position of the TS centre. In equation (2.8), p ( x .  t )  replaced the discrete variable p,, and, 
in the continuum limit, is given by 

p ( x ,  t )  = -Roau(x, t ) / ax .  (2.9) 
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This enables us to integrate equation (2.8) for u ( x , t )  using the asymptotic boundary 
condition u ( m )  = 0, which yields [13] 

(2.10) 

The effective mass of a To& soliton M' is defined through the change of the lattice 
mass density due to lattice site displacements. For the solution of equation (2.7), M' has 
the simple form 1141 

Ma = 2pM. (2.1 1) 

The energy of a single TS is given by 

E, = (2x/b*)[sinh(~) -@I (2.12) 

which, in the long-wavelength approximation, can be represented as the sum of the potential 
( E o )  and the kinetic energies: 

E$ Eo + f M * v 2 .  (2.13) 

3. Perturbation of the Hamiltonian 

The one-dimensional Toda lattice Hamiltonian can be written as 

(3.1) 

where pn MauJar represents the momentum variable conjugate to the displacement U". 
As we have already mentioned, a perfect Toda lattice is completely integrable and hence 
no thermal resistance is present. However, we can use the Toda Hamiltonian as a starting 
point for the modelling of a more realistic behaviour of monatomic lattices. To this end, 
we perturb this classical Hamiltonian by introducing quantum oscillations superimposed 
on the (integrable) classical motion of the chain's masses. This procedure will make 
the Hamiltonian nearly integrable and the resultant interactions between classical modes 
(solitons) and quantum modes (phonons) will lead to scattering giving finite lifetimes to 
solitons and resulting in a finite thermal resistance of the lattice. Thus, we represent the 
position and momentum variables as composed of classical and quantum contributions as 
follows: 

U. = U; + p: = p. + U" or 6% = P,"+ P,4" (3.2) 

and 

pi' = rr" p,9" = P. (3.3) 

where we have introduced the second set of symbols for greater clarity. This type of 
representation has already proven useful when discussing the Mossbauer effect in a Toda 
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lattice [14]. With equations (3.2) and (3.3), the Hamiltonian of equation (3.1) takes the 
form 

The first of the summations above represents the energy of the phonon degrees of 
freedom and can be readily second quantized using the standard transformations below: 

and 

(3.5) 

(3.6) 

As a result, we obtain the diagonalized form 

where a t  and ak denote the creation and annihilation operators, respectively, for phonons 
with the wavenumber k which satisfy the dispersion relation 

The second sum in equation (3.4) describes the classical part of lattice vibrations, which 
are required for TS formation, i.e. 

= (x / iW)' f lk .  

The remaining part of the Hamiltonian in equation (3.4) represents interactions between 
TS and quantized phonons, i.e. 

where the following coefficients have been used 

(3.9) 

f i  112 

a: = b (-) [exp(-iq&) - I] exp(fiqnR0) = aq exp(+iqnRo) (3.10) 
2 M N Q 9  
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and 

y; = -iN-"z(ftMQ2,/2)"2 exp(+inRoq). (3.11) 

The last term in the interaction Hamiltonian of equation (3.9) is inconvenient as it stands. 
However, denoting it as 

(3.12) 

we can effectively remove it from the Hamiltonian by performing a unitary transformation 
of the form 

H& = e-S(Hph + H,,, + H$')e+s (3.13) 

where the operator S is chosen as 

s = - y ( X , a ,  - xp;,. 
9 

The a priori unknown amplitudes X, can be determined from the condition 

and they are, indeed, found to be 

(3.14) 

(3.15) 

(3.16) 

From the definitions used we obtain the conjugate momentum as 

R~ = Map./at = - m a p / a x  (3.17) 

but we also know that 

- p. 2: -Roapiax = P(X, t )  (3.18) 

provided the continuum approximation is valid. Therefore, in view of equation (2.8) we 
obtain 

(3.19) 

which can be inserted into equation (3.16). Then, replacing the summation E, by the 
integration (l/RO) rm dx, we obtain explicitly the form of the required coefficient X, as 

(3.20) 
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Next, we determine the form of the remainder of the interaction Hamiltonian following 
the unitary transformation discussed above: 

(3.21) 

where Eo is an insignificant constant energy shift given below as 

Eo = c(2u,"'u:,X9X;, + u ~ u : , X ~ X ~ ,  + L Y : ( Y ~ : X , X , ) .  (3.22) 
9.9' 

Thus, the transformations used in this section have led us to a more convenient form of 
the Hamiltonian, which includes a classical (soliton) part, a quantum (phonon) part and 
their mutual interactions. The latter part has been represented effectively by equation (3.21) 
where coupling to soliton momenta has been explicitly removed. 

4. Calculations of the energy flux 

Our staaing point is the effective Hamiltonian obtained in section 3 ,  i.e. 

Htot = Hsol 4- Hph + (4.1) 

where we use H of equation (3.7). H,,, of equation (3.8) and €€:: of equation (3.21). 
We now wish to investigate the impact of Toda solitons on the phonon energy flux. For a 
particular phonon mode with a wavevector k, the associated energy flow can be calculated 
within the framework of Zubarev's NSOT as 

( U )  = Tr[&fi(r)] (4.2) 

!h 

where the overdot will henceforth denote a time derivative. The density mahix f i ( t )  used 
above is formally given by NSOT as 

f i ( t )  = Q-' exp(-E - 6 B )  

B = ~ H ~ ~ = ~ C A Q ~ ~ , ' ~ ~  (4.4) 

(4.3) 

where Q is the partition function for the phonon modes and we have defined 

9 

with the usual notation for p = (k fT) - ' .  The small perturbation term 6 E  is responsible for 
the soliton-phonon interaction and is given by 
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Here, E is a small parameter, so that time dependence is included adiabatically. The time 
derivative of Hk is calculated in the usual manner through the use of Heisenberg's equation 
of motion 

f i k  = (ih)-'[Hk, Ha,] = ( i f i ) - '@aka$Uk, ffj$]. (4.6) 

This is found explicitly as 

f i k  = fik(n)e,(t) 
n 

where 

(4.7) 

and 

In the continuum approximation [ 111 the latter coefficient becomes 

Making use of equation (4.9) in [ I l l  and employing the results presented in this section 
gives the average energy flow for the k-mode as 

Here, (. . .)o denotes taking the expectation value with respect to the equilibrium statistical 
operator & where 

bo = e-B/Tre-B. (4.12) 

In equation (4.1 l), the symbol (. . .)a is the classical timedependent forcsforce correlation 
function defined following Mertens and Biittner [6] and is expressed as 

(4.13) 

where D is the classical partition function of the anharmonic Toda chain. Since p is velocity- 
dependent through equation (2.6). a closed-form solution of the integral in equation (4.13) 
is not possible [6]. In order to provide a semiquantitative estimate of the expression in 
equation (4.13), we introduce an average solitonic parameter ii in subsequent calculations. 
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First of all, when evaluating the ,I. integral in equation (4.11) we use retarded Green 
functions of the type 

r d t )  E ((a:(o)lfik(~~ t))) = 18(-t)/fi]([Q:z f i k ( l ,  t)l)O (4.14) 

where 8 is the Heaviside theta function, so that 

for t c 0 
8(-t) = (4.15) 

With these definitions, we obtain for equation (4.1 1) 

In this calculation we made use of the fact that (&& = o since Tr(&&) 
define Fourier transform of Green functions as 

0. Next, we 

(4.17) 

Consequently, the following auxiliary expressions are obtained 

and 

where we take the mean occupation number for phonons in the usual form 

N k  = [expwhak) - I]-'. 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

(4.24) 
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In order to be able to evaluate explicitly the effect of the classical soliton dynamics on 
the quantum degrees of freedom, we make the continuum approximation in equation (4.16) 
by replacing summations with integrations according to 

(4.25) 

Noting that 

ai = aq exp(iqnR0) -+ aq exp(iqx) (4.26) 

we arrive at a number of integrals that can be carried out analytically. For example, taking 
the term in equation (4.22). we find 

Calculations involving the remaining terms present in  equation (4.16) are quite analogous 
and we shall not present their details here for the sake of brevity. The next step is to 
perform the requisite integration with respect to the position coordinate xo of the centre of 
a Toda soliton. In the same example as before, i.e. for equation (4.22), we obtain 

(4.28) 

This then makes the subsequent integration with respect to time t very simple indeed 

+m 
dt exp[-i(o+ K + q)r ]  = - (4.29) 

Once again, we wish to emphasize that both the solitonic parameter fi  and the effective mass 
of a TS depend on the propagation velocity U. Thus, in view of the result in equation (4.29) 
and the expression (4.13). the velocity averaging procedure simply replaces U by Iw/ (K+q) l .  
Hence, the integrmd in equation (4.13), denoted for convenience as f[u; f i (u ) ;  M * ( u ) ] ,  
exhibits a sharp resonant behaviour as a result of scattering. We may, therefore, write 

(4.30) 

Finally, the inverse Fourier transform of the Green function above leads to a Cauchy-type 
integral 

(4.31) 

We, therefore, conclude that Ts are characterized by an 'average' solitonic parameter h, 
which satisfies the implicit formula 

csinMfio)/h = (Qb + Qq2,)/(k + 4 )  (4.32) 
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Figure 1. Plot of the k dependence of the summands 
in the first term of equation (4.36). 

and contribute resonantly to the process of energy transfer. 

following expression for the energy flow of a single mode K 

Figurr 2. 
condudon coefficient K of equarion (4.42). 

Tempera" dependence of the thermal 

Canying out these calculations for the remaining terms in equation (4.16) we find the 

(4.33) 

D = ~ N R o ( ~ / Z M , ' ~ ) ' / ~  exp(-Eop)(l - @[(M~pp)%]) .  (4.34) 

@(a) = dY exp(-YZ). (4.35) 

where M,* = 2Mpo'and the normalization factor is given by 

Here, @ is the error function defined in the usual way as 

l 
In order to find the total energy flow, contributions of the type in equation (4.33) must 

be summed over all wavenumbers K ,  This yields 

(4.36) 

where the following symbols have been used 

and 

y = (33hb2Ro/Mc)~ (4.38) 

It is not difficult to see thai the first sum in equation (4.36) dominates the picture. In figure 1 
we have shown how the various K-modes contribute to it for a range of values of (nlpo). 
The function has a damped oscillatory profile with its peak values diminishing successively. 
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It would certainly be instructive to make numerical estimates of the calculated effect. 
At present the only data available for Toda solitons in actual physical systems are those 
pertaining to DNA. In this case, Muto et a1 [16,17] provided the following estimates of the 
model parameters: 

x = 31.7 N m-l 

RO = 3 x IO-" m M N kg. 

b = 6.18 x 10" m-' c = 1.69 x lo3 m S-I 
(4.39) 

This set of values leads to the relationship: y = 2 x 10-2ry. As hinted at earlier, the 
conhibution due to the two-phonon interaction in equation (4.36) is negligible compared to 
the first term reflecting the Ts-phonon coupling. 

A further approximation we wish to make is to ignore the K dependence of the effective 
solitonic parameter PO in equation (4.32). This is, in fact, exactly satisfied in the linear 
regime of the phonon dispersion relation. We then make a transition to the continuum limit 
and, performing the integration over K ,  produce the following relatively simple result 

Our working assumption now is that the energy flow along the molecular chain brings about 
a temperature gradient with a smooth profile along the chain. For a very long chain, the 
temperature difference between neighbouring sites is negligibly small and we can write the 
energy flux due to soliton propagation as 

@E ( H ) / R i  = KT/Ro (4.41) 

where K (W-I K-') is the thermal conduction coefficient given explicitly as 

This coefficient, plotted as a function of temperature, is shown in figure 2. It is a 
smooth function decreasing at both the low- and high-temperature limit and peaking at 
a characteristic temperature given by TM = 2M:Cz/3k~. This type of behaviour can be 
readily verified by experiment and we encourage experimentalists to undertake the required 
measurements for monatomic anharmonic lattices. Based on our analysis, it is clear that 
the narrower the TS, the larger the value of TM and, conversely, broad solitons would lead 
to low values of TM. 

5. Discussion and conclusions 

The main objective of this paper has been to estimate the contribution to heat conductivity 
due to the interactions between Toda solitons and lattice phonons in non-linear monatomic 
chains governed by perturbed Toda potentials in the absence of impurities. We have 
demonstrated that, without a doubt, interactions between localized modes (solitons) and 
phonons will be manifested through a finite contribution to the heat conduction coefficient. 
This contribution will have a specific dependence on temperature, as has been shown in 
detail in section 4. In this connection, recent numerical simulations [5] demonstrated that, 
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in perfect non-linear lattices that support the existence of pulse-like excitations, a number of 
interesting phenomena emerge. In particular, pulsed excitations create 'peaks' that propagate 
ballistically along the chain. Their speeds exceed the harmonic sound velocity and the 
profiles resemble solitary waves. It was concluded that, due to anharmonicity, initially 
localized modes become delocalized. This effect is responsible for the anomalous diffusion 
regime of the energy transport. 

The main result of this paper is the thermal conduction coefficient of equation (4.42), 
which exhibits a pronounced maximum at a characteristic temperature TM. In very pure 
crystals, e.g. NaF, a similar effect has been seen experimentally 151. There, T, = 16.5 K 
and the corresponding value of heat conductivity is K = 2.4 x IO4 W m-' K-I. It is 
conceivable that the mechanism responsible for this effect is closely related to the one 
discussed in our paper. 

[XiO? 1xrC91 
21nCd2WC~-3R 

x"erfc(2irr'") 

I O  
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40 60 80 100 120 140 1MI 180 200 
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Figure 3. Plots of K(T) for (a) fio 
equation (5.2). 

In the only case for which numerical data are available to us, i.e. DNA, we can cany 
the discussion even further. The model parameters given by equation (4.39) still leave one 
arbitrary coefficient, i.e. the solitonic parameter go. Choosing two representative values 
of p ~ ,  for example, = 0.1 and go = 0.02 to represent the average values for long- 
wavelength TS, we obtain the conduction coefficient as follows: 

and 

respectively. These expressions give the coefficient K in SI units and have been plotted in 
figure 3. We believe that the increase of K with decreasing temperature reflects the fact 
that the average number of TS, Ns, grows with T. For example, Muto el al [16] report 
that Ns - while Mertens and Buttner [6] predict a linear dependence on temperature 
Ns ,.- T. Eventually, however, increasing the temperature must lead to a saturation of 
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the lattice with Toda solitons and NS must reach its asymptotic limit. At the same time 
soliton collisions and their scattering of the phonon gas must increase with temperature. 
Thk would result in an effective decrease of the mean free path. It is, therefore, clear 
that the two tendencies are in direct competition. Soliton production and scattering effects 
lead to a balance that is reflected in the form of K ( T )  characterized by: growth, peak and 
asymptotic decrease. 

It has been shown [19] that the anharmonic interaction between phonons leads to three- 
phonon scattering processes, which are referred to as Umklapp processes. This phenomenon 
shows an exponential decrease of conductivity as a function of temperature. The only 
difference in comparison with our approach is that, instead of the Debye energy hwo = ksTo, 
we have the solitonic energy M’c2/2 in the exponential factor. It is also worth noting that 
in our mechanism the behaviour of K ( T )  for higher temperatures satisfies the relationship 

K ( T )  - Tm3” (5.3) 
while on the basis of pure phonon-phonon interactions [ 191 it has the form 

K ( T )  - T-’ (5.4) 
since the phonon’s mean free path is I -  T - ’ ,  so that in the classical expression 

K = ICr3f 3 (5.5) 
only f depends on temperature. Here, Cr is the specific heat and CI is the average drift 
velocity of elastic waves. In our mechanism, however. decreases with T faster than that 
since the velocities of TS increase and the collisions with phonons become more frequent. 
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